Purpose: In 2019, we described ASTEROID, a new stereotest run on a 3D tablet
computer which involves a four-alternative disparity detection task on a dynamic
random-dot stereogram. Stereo thresholds measured with ASTEROID were well
correlated with, but systematically higher than (by a factor of around 1.5), thresholds
measured with previous laboratory stereotests or the Randot Preschool clinical
stereotest. We speculated that this might be due to the relatively large, sparse
dots used in ASTEROID v0.9. Here, we introduce and test the stereo thresholds
and test-repeatability of the new ASTEROID v1.0, which uses precomputed
images to allow stereograms made up of much smaller, denser dots.
Methods: Stereo thresholds and test/retest repeatability were tested and compared
between the old and new versions of ASTEROID (n = 75) and the Randot Circles
(n = 31) stereotest, in healthy young adults.
Results: Thresholds on ASTEROID v1.0 are lower (better) than on ASTEROID
v0.9 by a factor of 1.4, and do not differ significantly from thresholds on the Randot
Circles. Thresholds were roughly log-normally distributed with a mean of
1.54 log10 arcsec (35 arcsec) on ASTEROID v1.0 compared to 1.70 log10 arcsec
(50 arcsec) on ASTEROID v0.9. The standard deviation between observers was
the same for both versions, 0.32 log10 arcsec, corresponding to a factor of 2 above
and below the mean. There was no difference between the versions in their test/
retest repeatability, with 95% coefficient of repeatability = 0.46 log10 arcsec (a
factor of 2.9 or 1.5 octaves) and a Pearson correlation of 0.8 (comparable to other
clinical stereotests).
Conclusion: The poorer stereo thresholds previously reported with ASTEROID
v0.9 appear to have been due to the relatively large, coarse dots and low density
used, rather than to some other aspect of the technology. Employing the small
dots and high density used in ASTEROID v1.0, thresholds and test/retest repeatability
are similar to other clinical stereotests.
computer which involves a four-alternative disparity detection task on a dynamic
random-dot stereogram. Stereo thresholds measured with ASTEROID were well
correlated with, but systematically higher than (by a factor of around 1.5), thresholds
measured with previous laboratory stereotests or the Randot Preschool clinical
stereotest. We speculated that this might be due to the relatively large, sparse
dots used in ASTEROID v0.9. Here, we introduce and test the stereo thresholds
and test-repeatability of the new ASTEROID v1.0, which uses precomputed
images to allow stereograms made up of much smaller, denser dots.
Methods: Stereo thresholds and test/retest repeatability were tested and compared
between the old and new versions of ASTEROID (n = 75) and the Randot Circles
(n = 31) stereotest, in healthy young adults.
Results: Thresholds on ASTEROID v1.0 are lower (better) than on ASTEROID
v0.9 by a factor of 1.4, and do not differ significantly from thresholds on the Randot
Circles. Thresholds were roughly log-normally distributed with a mean of
1.54 log10 arcsec (35 arcsec) on ASTEROID v1.0 compared to 1.70 log10 arcsec
(50 arcsec) on ASTEROID v0.9. The standard deviation between observers was
the same for both versions, 0.32 log10 arcsec, corresponding to a factor of 2 above
and below the mean. There was no difference between the versions in their test/
retest repeatability, with 95% coefficient of repeatability = 0.46 log10 arcsec (a
factor of 2.9 or 1.5 octaves) and a Pearson correlation of 0.8 (comparable to other
clinical stereotests).
Conclusion: The poorer stereo thresholds previously reported with ASTEROID
v0.9 appear to have been due to the relatively large, coarse dots and low density
used, rather than to some other aspect of the technology. Employing the small
dots and high density used in ASTEROID v1.0, thresholds and test/retest repeatability
are similar to other clinical stereotests.